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Agenda

Analysis framework and operational architecture
Logistics update

Power update
— Including movie of Andrew’s solar thermal plant

The Mars wish list (Paul)
Notes on ISRU (Alar)

Notes on SVN (Paul)



Mid-May 2008 July 15, 2008 Early September 2008
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Operational Architecture
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 The overall operational architecture for the initial toehold is based on
one-way flights delivering cargo and crew to the Martian surface

— Potentially with an emergency return capability
e Mars capture is assumed to be accomplished by aerocapture

e Subsequent lifting entry and propulsive descent are used to deliver
payloads to the single surface outpost site

— Outpost location is subject to a variety of factors (insolation, water, elevation)

* The exact size and payload capability of each lander depends on the Earth
departure architecture and entry body chosen



Toehold Location: Topography
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Toehold Location: Solar Power
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Toehold Location: Water
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Logistics Assessment - Update



General Study Objectives

Carry out an assessment of re-supply needs for the
outpost given different technologies

— Including high-closure life support, ISRU

|dentify key re-supply drivers and carry out in-depth
analyses

|ldentify interesting technologies with high payoff in
re-supply mass reduction

— Carry out initial modeling and testing of these technologies

Formulate plan for further technology development



Cumulative lifecycle mass [mt]
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Cumulative lifecycle mass [mt]
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Mars Surface Habitat Architectures 9-13

30 9
28 S
Zirconia electrolysis +
I . water electrolysis ..ol
+ Sabatier reactor
24 1

s = = = ] ]
] Hich jag jee] ) ]
|

=
jan ]
|

Cumulative lifecycle mass [mt]

B CO2Z removal
COZ regeneration

WO provision
Hygiene & health

m YV ater provision

COZ2 compression
B CH4 regeneration
W Food provision

Clothing

ISR

+ methane pyrolysis - T

Zirconia electrolysis,
no water electrolysis,
Sabatier reactor,
methane pyrolysis

Architecture 9

Architecture 10 Architecture 11
A _J/

Architecture 12

Architecture 13
_J/

~—
Zirconia electrolysis, scaled-up

~—
Zirconia electrolysis, scaled-down



Preliminary Insights

e Existing technologies allow for re-supply
masses per opportunity of ~¥2 mt / person

— This includes fairly conservative tare fractions on
pressurized logistics and fluid re-supply

e Remaining high-mass re-supply items are:
— Food
— Spare parts (fans, multi-filtration beds, etc.)

— Hygiene & health re-supply (soap, first-aid, etc.)
— Hydrogen for ISRU



Food Logistics Reduction

 Many options for closure of the food loop
have been investigated over the decades

e Two major families of options:

— 1. Chemical regeneration of food from waste

e Synthesized chemicals suitable for long-term ingestion
include: glucose, glycerin, ethanol, formose sugars

— 2. Biological regeneration of food from waste
e Algae (also for CO, regeneration)
e Higher plants (wheat, corn, vegetables, etc.)
e Animals (fish, chicken)



Mars Surface Power Generation and Energy Storage

Power Update



Surface Power Architecture Tree
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 There are two basic types of analyses that can be carried out:

— Equal power analysis: all systems provide the same (constant) power
output at any point in time

— Equal energy analysis: all systems provide the same usable energy per
day (for photovoltaic systems this means increased power generation
during the day)



Modeling

 Created model for a Mars solar array based on
following major requirements:

— Array must be sized for end-of-life power generation
capabilities

— Array must be sized to provide the required power during
the year’s minimum incident solar energy period

e Model Assumptions:

— Optical depth of 0.4 and secondary power source as
backup for less ideal atmospheric conditions

— Degradation per year only from radiation due to a dust
protection/removal mechanism (dust protection/removal
system needs development)



Model Inputs and Outputs

* |nputs:

— Minimum solar energy e Outputs:

— Eclipse Time — Array area

— Daytime/nighttime
power red.

— System mass

o — System volume
— Power distribution eff.

— Solar array eff.

— Degradation per year
— Array lifetime

— Optical depth

— Latitude

— Array packing density



Initial Results
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Initial Results Cont.
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Future Work

Reassess architecture options in MinMars colony
context. Previous power analysis for shorter round
trip mission.

Analysis and development of deployment techniques
for large surface arrays.

Operations considerations such as dust removal and
maintenance.

Dust storm power generation.

Investigate more architecture options such as solar-
thermal.



Mars Wish List



Transportation

Automated Mars landing and hazard avoidance
navigation systems

Mars in-situ propellant production friendly rocket
combustion / performance characterization
(C2H4/LOX; CH4/LOX); more important if people
want to come back

Large-scale (20mt+) Mars aero-entry (and EDL more
generally) technology

Low mass, cost, power and ideally autonomous
deep-space (out to at least ~2 AU) navigation
systems (software, hardware)



Power

 Automated, large scale (football field+) solar array
transport, surface deployment, and maintenance
systems

 High energy density electrical power storages
systems (aiming in particular towards high energy
density relative to Earth imported mass)

 Mars surface internal combustion engines (LOX, plus
various fuels, e.g., C2H4, CH4, CO, etc), possibly with
water exhaust reclamation.



Life Support, Logistics, ISRU

Mars atmosphere collection systems (at minimum CO2; adding N2 and Ar is useful;
H20 depends on energy/mass intensity relative to other options)

Mars permafrost mining systems (for varying wt% H20); note, this is much easier
than mining putative lunar ice

Good, high capacity Mars surface cryocoolers (options for just soft/medium
cryogens (e.g., LOX, CH4, C2H4), or also for hard cryogen (LH2))

Earth-Mars hydrogen transport systems (not necessarily as LH2)

Basic ISRU chemical processing systems (e.g., H20 electrolysis, Sabatier, RWGS,
CO2 electrolysis, ethylene production, etc.)

High closure physical-chemical life support systems (e.g., air revitalization, water
recycling)

"Food system" for food supplied from Earth. Consider being able to survive on
food shipped 5 years ago.

Mars surface food production systems
Simple in-situ manufacturing systems (e.g., for spare parts)

Simple raw materials production (e.g., plastics such polyethylene, epoxies,
ceramics, etc.)



Outpost Ops and Surface Exploration

Mars surface communication and navigation systems
(e.g., for rovers), sans extensive satellite
constellation

Very high data rate Mars-Earth back-haul comm
system

Good Mars surface EVA suits

Data collection, analysis in support of landing site /
outpost location selection

Very long distance surface mobility systems
(including with people)

Solar flare / SPE warning systems



Notes on ISRU (Alar)



Notes on SVN
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